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Electron tunneling across a nanojunction is an important topic relevant to scanning tunnel microscope
imaging, nanoconductance measurements, and nanoelectronic devices. To understand such tunneling phenom-
ena, one needs to comprehend the electron-state coupling between the metal electrode and the vacuum, the
dependence of such coupling on the shape of the electrode tip, and the dependence of the tunneling currents on
the electrode-electrode distance. Due to the experimental difficulty to determine the exact atomic structure of
the electrode tip, theoretical simulation can play an important role on such studies. This requires high-fidelity
quantum-transport calculations for the tunneling system. However, most of the current quantum-transport
calculations are performed using atom-centered localized basis sets, which cannot adequately describe the
wave function in the vacuum region. In this work, we present tunneling-conductance calculations obtained
using the transport calculation method introduced by Wang [Phys. Rev. B 72, 045417 (2005)] and Garcia-
Lekue and Wang [Phys. Rev. B 74, 245404 (2006)]. Since this method employs a plane-wave basis set, it
provides variational description for the electron wave functions in all real space. We will present results for the
tunneling-current dependence on the electrode-electrode distance, the electrode wave functions in the vacuum
region depending on the electrode shape, and electron state couplings between the vacuum and the electrode.
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I. INTRODUCTION

In recent years, different experimental techniques'~* have
enabled the formation of current conducting atomic-size
junctions, which are of great interest in view of their ultimate
application to future nanoscale-device technologies. Depend-
ing on the distance between the electrodes of the junction,
the conductance can vary several orders of magnitude when
the applied bias voltage is low. Accordingly, two different
regimes are usually distinguished: contact or high-
conductance and tunneling or low-conductance regime.> The
low-conductance or tunneling regime of such atomic-scale
junctions has been thoroughly studied with the scanning tun-
neling microscope (STM).® In particular, an experimental
quantity that can be extracted from STM experiments which
may shed some light on the mechanism of electron tunneling
is the apparent barrier height.”® This quantity is obtained by
measuring the variation in the tunneling current (/) as a func-
tion of the distance between both sides of the junction, i.e.,
between the tip and the apex (Az). Although many experi-
mental results of apparent barrier heights have been
reported,”!? the effect of the detailed atomic structure of the
junction on the apparent barrier height has not been exten-
sively studied, due to the difficulty of experimentally inves-
tigating the tip atomic structure. Another interesting question
is the coupling between the electronic states in the electrode
and the electronic states and modes in the vacuum, as well as
the way the atomic structure of the electrode tip affects such
coupling. The amplitude of the tunneling is mainly depen-
dent on the evanescent electron states in the vacuum region.
These evanescent states have different symmetries and,
therefore, can decay very differently. It is, thus, interesting to
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understand the coupling between the electrode states and the
electron wave functions in the vacuum. Such knowledge and
experimentally measured tunneling current can perhaps pro-
vide information about the atomic structure of the electrode
tips.

Given the high sensitivity of conductance to atomic-
structure details, it is necessary to perform ab initio simula-
tions using first-principles methods such as those based on
density-functional theory (DFT). In particular, the more
widely employed method combines the nonequilibrium
Green’s function formalism (NEGF) and DFT electronic
structure obtained with a localized atomic basis.!*2" In prin-
ciple, DFT methods cannot rigorously handle nanojunctions,
open systems that are infinite, nonperiodic and out of equi-
librium because DFT describes systems in their ground state.
Besides, for almost any practical DFT calculation, one needs
to consider some reasonable approximation for the xc func-
tional. Therefore, DFT is just one of the best choices cur-
rently available for quantum-transport calculations and the
so-called NEGF-DFT approach should be treated as a prac-
tical method rather than a rigorously exact theory.

With regard to the basis set used within the NEGF-DFT
transport calculations, there are issues of the variational com-
pleteness of the atomic basis sets especially when dealing
with tunneling problems. Sometimes it is necessary to intro-
duce ghost orbitals, where their locations and orbital types
are not unique.?! For example, the tunneling current crossing
a vacuum gap cannot be described adequately by the conven-
tional atomic basis set due to the lack of flexibility to de-
scribe the tunneling wave functions in the vacuum region.
Similarly, in a STM image simulation the use of atomic basis
sets often leads to shorter tip to substrate distances than in
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the experiments, again due to the lack of flexibility to de-
scribe the wave function. The most widely used basis set in
material science simulation is the plane-wave-basis set. This
basis set is considered to be variationally more complete than
the localized basis, especially when pseudopotentials are
used. Thus, numerically more accurate results can be ex-
pected from plane-wave calculations. There are recent ap-
proaches which generate the localized Wannier functions as
the localized basis starting from the plane-wave-basis set for
NEGF-DFT calculation. But approximation needs to be
made to truncate the number of Wannier functions and the
interactions between Wannier functions.?> Another alterna-
tive route within plane-wave-based DFT is given by the
novel quantum-kinetic approach introduced in Ref. 23. In
this approach, a time-dependent Hamiltonian is used to de-
scribe an external circular electric field within a periodic
boundary condition and a quantum-mechanical Liouville
master equation is solved including the electron-phonon in-
teraction.

Recently, we have developed a procedure to efficiently
calculate the scattering states in quantum-transport problems
using a plane-wave-basis set.?*~2% Our approach is valid for
any applied bias voltage since the current is calculated self-
consistently, and can include exact evanescent states, which
are also calculated using plane waves. The scattering states
are solved exactly in a fast and numerically stable procedure
with a computational time similar to a conventional ground-
state calculation. Based on these scattering states one can
straightforwardly calculate the transmission coefficients and
the corresponding electronic current. Since the plane-wave-
basis set is variational enough to describe the wave function
in the vacuum region, this quantum-transport-calculation
method is expected to be well suited to describe the tunnel-
ing problem.

Using this plane-wave-based transport approach, we have
investigated the influence of the detailed atomic structure on
the apparent barrier height of Au nanojunctions and we show
that this approach is indeed very appropriate for the descrip-
tion of transport properties in the tunneling regime. The rest
of the paper is organized as follows. In Sec. II we explain the
plane-wave-based quantum-transport-calculation method. In
Sec. III, illustrative results for some Au nanojunction model
systems are provided. Finally, in Sec. IV, we state our con-
clusions.

II. NUMERICAL METHOD
A. Elastic quantum-transport calculation

The current that flows through the model Au nanojunction
shown in Fig. 1 can be calculated using the Landauer for-
mula

I= zh—e f #RE T,(E)dE, (1)

where w; and ug are the left (L) and right (R) electrode
Fermi energies, assuming that the current flows from right to
left, and T,(E) is the transmission coefficient for the nth
right-hand electrode band with energy E.
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FIG. 1. (Color online) Model Au nanojunction, where QR
represents the L(R) primary unit cell.

The transmission coefficient can be calculated using dif-
ferent methods, such as the most commonly employed non-
equilibrium Green’s function method. An alternative way to
obtain T,(E) involves the calculation of the scattering states
of the system, which are the solution of the following
Schrodinger equation:

stc(r) = Elﬁsc(") P (2)

where H=[—%V2+ V(r)] is the single-particle Hamiltonian
and V(r) includes the nonlocal potential V,,,;,.. The scatter-
ing states ¢,.(r) must fulfill the boundary conditions of the
problem given by

(;551*(7') + 2 Bs(ﬁs(r) if z— oo,
n#m
(1) = 3)
¢ EAb(ﬁb*(r) lf Z—)—OO’
where z is chosen as the direction of current propagation.
¢5(R)(r):u”,kn(r)exp(iks(l‘)z) [¢-R*(r)] represents the left-
going (right going) waves in the L and R electrodes, respec-
tively, and qbfn*(r) is an incoming running wave from the
right electrode with energy E. EE(L)(kE(L)):E are the elec-
trode band structures, and the summation X, in Eq) (3) stands
for all band n and kE(L) which satisfy EE(L (kg(m):E.
Hence, Eq. (3) describes an incoming running wave q’)fn*(r)
from the right electrode m, which is scattered back through
outgoing running waves BX¢R(r) at the right electrode and
transmitted into left-going running waves Af; ¢L‘*(r) at the left
electrode. The transmission coefficient for channel m result-
ing from this scattering event can be calculated as

(E IAklz[dE’,;(k)/dk]|k=kb)

n

T,(E) = (4)

[dEp (K)/di] |

Hence, the main ingredient in our transport approach is the
scattering state i/;,.. In the following, the method employed in
this work to obtain . is briefly described.

B. Scattering-state calculation

In order to solve Eq. (2), we impose auxiliary periodic
boundary conditions at the boundaries B of the system so
that our open boundary problem is transformed into a con-
ventional closed boundary problem.?* Under these conditions
we can solve the following linear equation:
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(H—E)(r)=W(r), (5)

where W,(r) represent some perturbation functions that are
nonzero only near the boundaries B of the system. Equation
(5) is solved using the conjugate gradient method and the
solutions #;(r) will be denoted as system states.

Far enough from the molecular region the system poten-
tial will decay to the potential of the electrode. Consequently,
at L and R electrode primary cells ) and Qg (Fig. 1), each
system state i; with energy E can be decomposed using the
running and evanescent electrode states at the same energy
E. In order to properly account for the evanescent states, the
complex band structure of the electrode can be calculated
following the procedure introduced in Ref. 25. Alternatively,
approximated evanescent states can be employed in the sys-
tem state decomposition, as described in Ref. 24. This ap-
proximation might be useful for speedy calculations. How-
ever, one should in this case pay special attention to the
possible appearance of ill-behaved evanescent states. There-
fore, the use of exact or evanescent electrode states will de-
pend on the system under investigation.

In the extended region shown in Fig. 1, which consists of
the molecule and the short electrodes, one can linearly com-
bine the system states to generate the scattering states of Eq.
(2) as follows:

M
lpsc: E C]lpl(r)’ (6)
=1

where the coefficients {C;} are chosen so that the boundary
condition of Eq. (3) is satisfied at ) and Qg. Introducing
the electrode-states based decomposition of the system states
at {); (g) in the linear combination of Eq. (6) and taking into
account the boundary conditions of Eq. (3), leads to a small
dimension linear equation for {C;}, which can be solved eas-
ily. Details on these equations and how to solve them are
described in Refs. 24 and 25. From the solution of these
equations one can then construct the scattering states using
Eq. (6). Such scattering states are correct only in the ex-
tended region of Fig. 1 since near the boundary B they do not
satisfy Eq. (2) due to the existence of W, perturbation func-
tions. However, outside the region beyond ) and g, we
can obtain the scattering states by propagating the nonzero
electrode states at {) g into z— = 0. In this way, we can
construct the scattering state over the whole space.

This method is general and can be applied to any Hamil-
tonian. In this work we use a plane-wave Hamiltonian both
for the system states as well as for the complex band-
structure calculation. As a result, we are able to calculate
scattering states for an open-boundary problem using plane
waves. From the knowledge of the scattering states, we can
straightforwardly calculate the transmission coefficients and
the current using Egs. (1) and (4).

C. Apparent barrier height

According to a one-dimensional (1D) description of the
tunneling barrier,>”-?® the tunneling current / at small bias
voltage V is proportional to V exp(~1.025Az\®), where Az
is the tip-apex separation in A and ® is given in electron
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FIG. 2. (Color online) Total transmission at the Fermi level as a
function of the vacuum-gap width.

volt. Hence, for constant bias, the apparent barrier height can
be expressed as the rate of change in the logarithm of the
current with the tip-apex distance,® as follows:

d1n1)2
dAz

o= 0.952( (7)
with ® in electron volt, Az in A, and arbitrary units for I.
In the low-bias regime only the states at the Fermi level
take part so according to Eq. (1) the current is proportional to
the total transmission coefficient at the Fermi level given by

T(Ep) = 2, T,(Ep), (8)

where the summation 2, stands for all band m that cross the
real band structure of the electrode at the Fermi level. It then
follows from Eq. (7) that the apparent barrier height in the
low-bias limit can be extracted from the slope of the loga-
rithm of T(E) with the electrode separation or vacuum-gap
width.

Therefore, the calculation of the apparent barrier height is
performed by first calculating the scattering states at the
Fermi level for different electrode separations in the tunnel-
ing regime. From the scattering states the transmission coef-
ficients for different channels and electrode separations are
obtained, and finally the apparent barrier height is extracted
following Eq. (7).

III. RESULTS AND DISCUSSION
A. Linear Au chain with plane waves

In order to verify that our plane-wave-based method re-
produces very accurately not only the contact but also the
tunneling regime, and hence yields an accurate result for the
apparent barrier height, we first investigate the simple model
Au nanojunction shown in the inset of Fig. 2. This junction
consists of an initially long linear atomic Au chain which is
broken in the central region.

The current flowing through this junction has been ob-
tained based on the transport approach described in Sec. II,
in combination with a standard plane-wave program.?’ Cal-
culations are performed using norm conserving pseudopoten-

035410-3



A. GARCIA-LEKUE AND L. W. WANG

tials and local-density approximation (LDA) for the
exchange-correlation function. Some eigenenergy errors are
expected from LDA calculations but our Fermi energy result
agrees reasonably well with the experiment. In order to prop-
erly describe evanescent states in the gap, we have used a
cylindrical 60 Ryd plane-wave cutoff. This means that the
plane-wave vectors will lie inside a cylinder which has no
cutoff in the z direction.”> For the electrode and for the
ground-state central region, the calculations are converged
with respect to the number of k points. For the transport
calculation, only I' point in the x,y directions is included. In
terms of total current, this might not be fully converged but
we do not expect any changes in terms of the slope of the
current as a function of distance. Besides, this will not affect
our scattering state wave-function analysis where only a few
states are selected. A zero applied bias voltage has been con-
sidered and the charge density is calculated self-consistently
from ground-state calculations.

For the calculation of the scattering states, the use of ap-
proximated evanescent states has been found to yield very
good results for the decomposition of the system states at
L(R) boundaries. Consequently, all the calculations presented
in this work have been obtained using approximated evanes-
cent states for the Au electrodes.

As shown in Fig. 2, we have calculated T(E) for the
broken linear Au chain using different electrode separations
ranging from contact to tunneling regime. In contact regime,
the total transmission at Fermi level is ~1, which is the
well-known result for a linear atomic Au chain with a single
transmission channel. As the two sides of the junction are
moved apart, the transmission decays smoothly. For large
enough vacuum gaps, we enter the tunneling regime and the
transmission exhibits a perfect exponential decay. From the
exponential tail of the transmission curve we get an apparent
barrier height of ~6.2 eV.

Before moving onto more thorough investigations of the
effect of geometry on the apparent barrier height, we first
compare our plane-wave transport calculation results with
the atomic-orbital basis set results. For this purpose, we have
done the same calculation as in Fig. 2 but using a NEGF-
DFT transport approach with atomic orbitals.'*3%3! An iso-
lated chain was used for both localized atomic orbital and
plane-wave-based calculations so both approaches include I’
point only and the comparison is fair. As seen in Fig. 3, plane
waves (solid lines) and atomic orbitals (dashed lines) give
the same result in contact regime. However, as the vacuum
gap increases the results start to deviate, and well into the
tunneling regime, the atomic orbitals are not able to nicely
reproduce the exponential decay of the transmission. This
problem can be overcome by introducing ghost atoms, i.e.,
floating orbitals that do not have electrons nor pseudopoten-
tial associated. Making use of ghost atoms, the transmission
obtained with atomic orbitals (dashed-dotted line) can be
made to have exponential decay and it agrees with the plane-
wave calculation result. However, we found that the results
depend strongly on the location and number of ghost atoms
and are difficult to converge. This might raise the issue of
reliability of that approach in tunneling regime.

On the other hand, in the case of systems involving a
large number of atoms, transport calculations using plane
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FIG. 3. (Color online) Total transmission at the Fermi level as a
function of the vacuum-gap width obtained using plane waves
(solid line), atomic orbitals (dashed line), and atomic orbitals with
ghost atoms (dashed-dotted line).

waves can be significantly more expensive than those based
on localized atomic orbitals. As a consequence, the choice of
using a plane-wave or a localized atomic basis set will de-
pend on the system under investigation and on the size of the
vacuum region between the electrodes.

B. Au nanojunctions: Geometric effects

In the following, we will focus on more realistic geom-
etries, as those shown in Fig. 4. System 1 consists of two
facing 4 X 4-Au(001) surfaces, periodic in the (x,y) plane

System 1

System 2

FIG. 4. (Color online) System 1 (top panel): 4 X 4-Au(001) flat
surfaces. System 2 (middle panel): 4 X 4-Au(001) with an adatom
on each surface. System 3 (bottom panel): 4 X4-Au(001) with a
five-atom pyramid on each surface.
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Energy (eV)

FIG. 5. (Color online) Real band
X 4-Au(001) electrode.

structure of the 4

perpendicular to the direction of propagation (z). By placing
a single Au adatom or a five-atom pyramidal bases on each
4 X 4-Au(001) surface we construct system 2 or system 3,
respectively.

At zero bias, only states at the Fermi surface are involved
in the tunneling transport, which involve only s states. As a
result, we have removed the d electrons of Au from our
pseudopotential method to reduce the cost of calculation. We
have checked that this approximation is appropriate by cal-
culating the transmission at Fermi level for a linear Au chain
using pseudopotentials with and without d bands. In both
cases, we get the same results for T(Ep) (not shown here).
Accordingly, the zero-bias transport calculations for systems
1, 2, and 3 can be performed using s-only pseudopotentials,
which makes the investigation of those systems computation-
ally more accessible. Note that, if the Au electrode is at-
tached to a molecule, it might be necessary to include d
states in the calculation, in order to get the band alignment
correctly between the molecule and the Au electrode.

The real band structure for the 4 X4-Au(001) electrode
obtained with the s-only pseudopotential is shown in Fig. 5,
where k, represents the wave vector in the direction of propa-
gation (z). With respect to K|, the wave vector in the direc-
tion perpendicular to the current propagation, we consider
the I'-point only approximation. This means that only K;=0
is included in the calculations. As discussed before, although
this might not converge the total current, we do not expect it
to affect the slope in Fig. 3.

Using the I'-point only approximation we find that four
bands cross the Fermi level, as represented by circles in Fig.
5. While the n=1 band is nondegenerated, the other three
bands are four times degenerated. Hence, and according to
Eq. (8), the total transmission at Fermi level will be the sum
of the contributions from four different channels originated
by 13 different incoming electrode states. The degeneracy of
the bands can be understood in terms of the K,, of the fcc
unit cell, which are all folded into the K;=0 of the electrode
supercell. Using the reciprocal lattice vectors, K, can be
expressed as ny=i—:;(nx,ny) where n, and n, are integer
numbers and represent the components of the wave vector in
the x and y directions, respectively, and a=4.18 A is the Au
lattice constant. The nondegenerated band would correspond
to the (n,,n,)=(0,0) case, and the {2,3,4,5}, {6,7,8,9}, and
{10,11,12,13} bands would correspond to (n,,n,) equal to
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(+1,0),(0,%1); (£1,%=1); and (£2,0),(0, =2) cases, re-
spectively.

Based on the procedure described in Sec. II, and using an
s-like Au pseudopotential both for the electrode and for the
central region, we have proceeded with the transport calcu-
lations. The transmission coefficients at the Fermi level for
systems 1, 2, and 3 have been calculated as a function of the
vacuum-gap width. Besides, in order to extract information
about the properties of each of the tunneling states involved,
we have calculated the contribution of each channel sepa-
rately. Figure 6 shows each of these contributions together
with the total transmission for system 1 (upper panel), sys-
tem 2 (middle panel), and system 3 (lower panel). For the
three systems, all transmission channels exhibit perfect ex-
ponential decay in tunneling regime. Fitting the transmission
curves to the 1D model, we extract the apparent barrier
height for each channel. In the case of flat surfaces (system
1), the four channels exhibit different barriers whereas for
corrugated surfaces (systems 2 and 3) all channels have the
same barrier height. As will be discussed below, this is be-
cause in the corrugated cases, the electrode states couple to
different vacuum states compare to the flat-surface case.

We now analyze the cause of different apparent barrier
heights for different electrode states and different electrode
shapes. At the vacuum region, as deduced from the single-
electron Schrodinger equation, the barrier height in the tun-
neling direction (z direction) is determined by the potential
height and the (x,y) direction kinetic energies in the middle
plane between the two electrodes. In order to study the po-
tential in the middle plane, we have plotted the x,y planar
averaged potential of systems 1, 2, and 3 as a function of z in
Fig. 7. This corresponds to the case when the vacuum-gap
width d is 10 A. We see that, the potential height V relative
to the bulk Fermi energy Ey in the middle plane is about 5.8
eV, and it is the same for all the three systems. We have also
calculated the potential for a strictly isolated flat surface, i.e.,
with no other flat surface in front of it. In this case, we get a
potential W (work function) of 6.1 eV, larger than the poten-
tial height V. However, V should equal W when the vacuum-
gap width tends to infinity. Therefore, from the fact that V
and W are different, we can conclude that even at 10 A, the
potential height is not converged. However, since our appar-
ent barrier heights are obtained from the slope of log[T(d)] at
around 10 A, we will use this value of V in our following
analysis. Note that our LDA calculated work function of 6.1
eV is larger than the experimental value of 5.4 eV.’? This
difference is caused by the LDA eigenenergy errors.

We next calculate the (x,y) direction Kinetic energies of
the scattering states in the midplane (z,,) as follows:

f (94, (x, 9,2,/ 9x* + |9 (x,y,2,,) Iy [ 1dxdy
K=

s

2] | e (6,3, 2, Pdxdy
)

where i, represents the scattering state at the Fermi level. If
we consider the incoming electrode states independently,
then we get ¢, and the corresponding kinetic energy for
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FIG. 6. (Color online) Transmission for each electrode channel
and total transmission at Fermi level as a function of vacuum-gap
width. Upper, middle, and lower panels correspond to system 1, 2,
and 3, respectively.

each transmission channel. The sum of the kinetic energy
and the potential height of the system should give the barrier
height of that specific channel. This is confirmed in Table I
where the kinetic energy (K), the sum of the kinetic energy
and the potential (K+ V), and the apparent barrier height (®)
obtained by fitting the transmission curve are shown. The
close agreement between the K+ W and @ is a bit surprising
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FIG. 7. (Color online) (x,y) planar averaged potential of system
1 (solid line), system 2 (dashed line), and system 3 (dashed-dotted
line). The origin of z direction is placed in the midplane between
electrodes.

since, as can be seen from Fig. 7 the barrier potential is not a
flat plateau.

A nice way to visualize the scattering states and the cou-
pling of the electrode states to vacuum states is presented in
Fig. 8, where In|i, (x,y,z)|* for the (n,,n,)=(0,0) scattering
state is plotted. One interesting feature is that in the flat
surface, the (0,0) electrode state is coupled with a flat
vacuum state (with a very small modification of its amplitude
in the (x,y) plane following the 4 X 4 atomic arrangement of
the electrode). As a result, the (x,y) kinetic energy in the
midplane is almost zero, as reported in Table I. On the other
hand, for the corrugated cases, the original flat front (0,0)
electrode state is coupled with a concave wave front,
spherical-like state. This is most predominant for system 3,

TABLE 1. (x,y) kinetic energy (K), (K+V), and barrier height
(¢). The barrier heights obtained from the fitted total transmission
curve are 6.4 eV, 6.7 eV, and 6.8 eV for systems 1, 2, and 3,
respectively.

State index K (eV) K+V (eV) ¢ (eV)
System 1
1 6.31x 107 5.80 5.72
2,34.5 1.07 6.87 6.80
6,7,8,9 2.15 7.95 7.87
10,11,12,13 4.3 10.10 10.00
System 2
1 0.83 6.63 6.71
2,3.4,5 0.95 6.75 6.68
6,7,8,9 0.96 6.76 6.69
10,11,12,13 1.02 6.82 6.50
System 3
1 0.95 6.75 6.79
2,3,4,5 0.93 6.73 6.77
6,7,8,9 0.93 6.73 6.75
10,11,12,13 0.86 6.66 6.71
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FIG. 8. (Color online) Representation of the (n,,n,)=(0,0) scattering states of system 1 (upper panels), system 2 (middle panels), and
system 3 (lower panels). (a), (d), and (g) panels: three-dimensional (3D) plots of In|¢,.(x,y,z)|> on the XY plane for Z in the middle of the
gap. (b), (e), and (h), and (c), (f), and (i) panels: 3D and two-dimensional (2D) plots of In|¢,.(x,y,z)|* on the XZ plane for Y in the middle

of the gap, respectively.

which has a pyramid shape. As shown in Table I, such a
spherical vacuum wave function has a large (x,y) direction
kinetic energy, which raises the apparent barrier height. It is
thus interesting to note that each corrugated atom at the sur-
face of the electrode can behave like an antenna which emits
spherical electron waves.

Note that, other (n,,n,) states for the flat electrode (sys-
tem 1) will only couple to the corresponding (n,,n,) vacuum
states (which can be confirmed from the scattering state
plots, although not shown here). As a result, their midplane
Kinetic energy is: %(Z—Z)z(nf+n§), as shown in Table I. This
explains their different apparent barrier height. An interesting
question is why all electrode states have approximately the
same apparent barrier height (Table I), although their current
amplitudes are different, as shown in Fig. 6. This will be
explained in the following section.

C. Odd/even states for corrugated Au nanojunctions

As we concluded from the results of the transmission co-
efficients shown in Fig. 6, all channels exhibit the same de-
caying behavior in systems 2 and 3. This is due to the fact
that all incoming electrode states couple to the vacuum-free
states. However, this might depend on our choice of incom-
ing electrode states. Right now, they are the distinct K,,
states as described by

By =2 Ug(k)e' Gk (10)
G

G being the reciprocal lattice vectors of the system. The
Bloch vector k is given by k=(Ky.k,), where in terms of
reciprocal lattice vectors nyzi—Z(nx,ny). As a result, these
electrode states do not have an odd/even symmetry, and they
will all couple to the spherical vacuum state.

A more interesting choice of the incoming electrode state
is the odd/even states. The electrode states given by Eq. (10)
can be combined in order to obtain electrode states with sine
[sin(i—::nyy)] or cosine [cos(i—:nyy)] odd/even character. Due
to their symmetry, not all the newly built electrode states will
couple to the spherical vacuum state. Cosinelike (even) elec-
trode states will couple to the vacuum free electron state but
sinelike (odd) electrode states will not. Consequently, sine-
like electrode states will decay much faster into the vacuum
and the corresponding transmission coefficients will then be
much smaller.

For example, let us apply this procedure to the bands
{2,3,4,5}. The corresponding electrode states, constructed
following Eq. (10) do not have odd/even symmetry and as
previously mentioned, they all show the same decaying be-
havior (see middle and bottom panels of Fig. 6). We now
combine these four electrode states in order to obtain two
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FIG. 9. (Color online) Transmission for odd/even electrode
channels of bands {2,3,4,5} and total transmission (for those bands)
at Fermi level as a function of vacuum-gap width.

odd ({2’,3'}) and two even ({4',5'}) electrode states. The
transmission coefficients for ({2',3’}) and ({4’,5'}) are
shown in Fig. 9. As predicted, the transmission coefficients
of the odd states (dashed line) are much smaller than those of
the even states (dashed-dotted line), which indicates that
most of the electron propagation is carried out by even states.
Therefore, odd states decay more rapidly than even states
and exhibit a larger apparent barrier height. This is confirmed
by fitting the transmission curves in Fig. 9: the apparent bar-
rier height of odd ({2',3'}) and even ({4',5'}) electrode
states is 7.0 eV and 6.7 eV, respectively. We have also veri-
fied that the sum of the transmission for even and odd elec-
trode states, i.e., the sum of the transmission from
{27,37,4',5'} electrode states (solid line of Fig. 9) gives
exactly the same as the sum of the contributions from the
{2,3,4,5} spherical electrode states (dotted line of Fig. 9).
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Finally, we have represented the scattering states corre-
sponding to odd and even electrode states. The upper and
lower panels of Fig. 10 show the scattering states for an odd
({2'} or {3'}) and an even ({4} or {5'}) electrode state of
system 3, respectively. We observe that the scattering state
corresponding to the odd electrode state exhibits a node on
the XY plane in the middle of the gap [Fig. 10(a)]. This
indicates that the odd electrode state does not couple to the
vacuum spherical state and that consequently, its decaying
length in the direction of propagation (z) is extremely short,
as shown in Figs. 10(b) and 10(c). For the even state on the
other hand, the scattering state on the (x,y) plane has spheri-
cal symmetry [Fig. 10(d)], which is an indication of its
strong coupling to the vacuum spherical state. As a result,
this state decays further from the surface in the z direction, as
shown in Figs. 10(e) and 10(f). From the decaying behavior
of these scattering states, one can conclude that the corre-
sponding transmission coefficients will be much larger and
that the barrier height will be lower for the even electrode
state. This agrees with the results shown in Fig. 9 and shows
that even states are the most relevant channels for electron
propagation in the tunneling regime.

IV. CONCLUSION

In this work, electron tunneling through Au nanojunctions
has been thoroughly investigated by means of a plane-wave-
based quantum transport calculation method. Special empha-
sis has been placed on the study of the apparent barrier
height, an experimentally measurable quantity strongly influ-
enced by electron-tunneling mechanisms. We present theo-
retical results for the tunneling-current dependence on the
electrode separation, which exhibits perfectly exponential
decay. By fitting the current versus electrode-separation
curves we are able to extract theoretical values of the appar-
ent barrier height.
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FIG. 10. (Color online) Representation of scattering states of system 3 corresponding to odd (2.3 (top) and even ({4,5}) (bottom)
electrode states. (a) and (d) panels: 3D plots of In|i,.(x,y,z)|* on the XY plane for Z in the middle of the gap. (b) and (e) and (c) and (f)
panels: 3D and 2D plots of In|i,.(x,y,z)|*> on the XZ plane for Y in the middle of the gap, respectively.
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We have investigated how the detailed atomic structure of
the junction and the coupling between the electrode and the
vacuum states affects the apparent barrier height. We find
that in corrugated surfaces the electrode states couple to dif-
ferent vacuum states compared to the flat surface case. Ac-
cordingly, for flat surfaces different channels exhibit differ-
ent barriers whereas for corrugated surfaces all channels
have the same barrier. In order to gain understanding about
these effects, we have derived an analytical formula for the
apparent barrier height in the midplane between the elec-
trodes, which is given by the sum of the potential height and
the kinetic energy in the plane perpendicular to the tunneling
direction. The values of the barrier calculated using this for-
mula agree very well with the values obtained from fitting
the tunneling current curves.

Further knowledge on the tunneling mechanisms has been
extracted from the visualization of the scattering states. We
show that for the flat surface the original flat electrode state
is coupled with a flat vacuum state while for the corrugated
nanojunctions it is coupled with a spherical-like, concave
wave front. As a result, each corrugated atom of the electrode
can behave like an antenna which emits spherical electron
waves.

PHYSICAL REVIEW B 82, 035410 (2010)

In conclusion, we have shown that our plane-wave-based
transport method provides a very accurate description of the
scattering wave functions in the vacuum region, and it is
therefore highly appropriate for the investigation of transport
properties in the tunneling regime. Our results encourage us
to pursue further studies of electron-tunneling problems em-
ploying plane waves.
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